Technology design
ทฤษฎีบทพีทาโกรัส
ในวิชาคณิตศาสตร์ ทฤษฎีบทพีทาโกรัส แสดงความสัมพันธ์ใน
เรขาคณิตแบบยุคลิด ระหว่างด้านทั้งสามของสามเหลี่ยมมุมฉาก
กำลังสองของด้านตรงข้ามมุมฉากเท่ากับผลรวม
ของกำลังสองของอีกสองด้านที่เหลือ ในแง่ของพื้นที่
กล่าวไว้ดังนี้
ในสามเหลี่ยมมุมฉากใด ๆ พื้นที่ของสี่เหลี่ยมจัตุรัสที่มี
ด้านเป็นด้านตรงข้ามมุมฉาก เท่ากับผลรวมพื้นที่
ของสี่เหลี่ยมจัตุรัสที่มีด้านเป็นด้านประชิดมุม
ฉากของสามเหลี่ยมมุมฉากนั้น
ทฤษฎีบทดังกล่าวสามารถเขียนเป็นสมการสัมพันธ์กับ
ความยาวของด้าน a, b และ c ได้ ซึ่งมักเรียกว่า สมการพีทาโกรัส
ดังด้านล่าง(อาจแทนด้วยตัวแปรอื่นเช่น x, y, z, ก, ข, ค)
โดยที่ c เป็นความยาวด้านตรงข้ามมุมฉาก และ a และ b เป็นความยาวของอีกสองด้านที่เหลือ
ทฤษฎีบทพีทาโกรัสตั้งตามชื่อนักคณิตศาสตร์ชาวกรีก พีทาโกรัส ซึ่งถือว่าเป็นผู้ค้นพบทฤษฎีบทและการพิสูจน์ แม้จะมีการแย้งบ่อยครั้งว่า ทฤษฎีบทดังกล่าวมีมาก่อนหน้าเขาแล้ว มีหลักฐานว่านักคณิตศาสตร์ชาวบาบิโลนเข้าใจสมการดังกล่าว แม้ว่าจะมีหลักฐานหลงเหลืออยู่น้อยมากว่าพวกเขาปรับให้มันพอดีกับกรอบคณิตศาสตร์
ทฤษฎีบทดังกล่าวเกี่ยวข้องกับทั้งพื้นที่และความยาว ทฤษฎีบทดังกล่าวสามารถสรุปได้หลายวิธี รวมทั้งปริภูมิมิติที่สูงขึ้น ไปจนถึงปริภูมิที่มิใช่แบบยูคลิด ไปจนถึงวัตถุที่ไม่ใช่สามเหลี่ยมมุมฉาก และอันที่จริงแล้ว ไปจนถึงวัตถุที่ไม่ใช่สามเหลี่ยมเลยก็มี แต่เป็นทรงตัน n มิติ ทฤษฎีบทพีทาโกรัสดึงดูดความสนใจจากนักคณิตศาสตร์เป็นสัญลักษณ์ของความยากจะเข้าใจในคณิตศาสตร์ ความขลังหรือพลังปัญญา มีการอ้างถึงในวัฒนธรรมสมัยนิยมมากมายทั้งในวรรณกรรม ละคร ละครเพลง เพลง สแตมป์และการ์ตูน
บทกลับของทฤษฎีบทพีทาโกรัส
บทกลับของทฤษฎีบทพีทาโกรัสนั้นเป็นจริง โดยกล่าวไว้ดังนี้
กำหนด a, b และ c เป็นจำนวนจริงบวกที่ จะมีสามเหลื่ยมมุมฉากหนึ่งรูปที่มีความยาวด้านเท่ากับสามจำนวนนั้น และสามเหลี่ยมนั้นจะมีมุมฉากระหว่างด้าน a และ b
ชุดของสามจำนวนนี้เรียกว่า สามสิ่งอันดับพีทาโกรัส อีกข้อความหนึ่งกล่าวว่า
สำหรับสามเหลี่ยมใด ๆ ที่มีด้าน a, b และ c ถ้า แล้วมุมระหว่าง a กับ b จะวัดได้ 90°
บทกลับนี้ยังปรากฏอยู่ในหนังสือ Euclid's Elements ของ ยุคลิดด้วย[8]
ถ้าในสามเหลี่ยมรูปหนึ่ง สี่เหลี่ยมบนด้านหนึ่งเท่ากับผลรวมของสี่เหลี่ยมบนอีกสองด้านที่เหลือของสามเหลี่ยมแล้ว แล้วมุมที่รองรับด้านทั้งสองที่เหลือของสามเหลี่ยมนั้นจะเป็นมุมฉาก
บทกลับนี้สามารถพิสูจน์ได้โดยใช้ กฎของโคไซน์ หรือตามการพิสูจน์ดังต่อไปนี้
กำหนดสามเหลี่ยม ABC มีด้านสามด้านที่มีความยาว a,b และ c และ {\displaystyle a^{2}+b^{2}=c^{2}} เราจะต้องพิสูจน์ว่ามุมระหว่าง a และ b เป็นมุมฉาก ดังนั้น เราจะสร้างสามเหลื่ยมมุมฉากที่มีความยาวของด้านประกอบมุมฉาก เป็น a และ b แต่จากทฤษฎีบทปีทาโกรัส เราจะได้ว่าด้านตรงข้ามมุมฉาก ของสามเหลื่ยมรูปที่สองก็จะมีค่าเท่ากับ c เนื่องจากสามเหลี่ยมทั้งสองรูปมีความยาวด้านเท่ากันทุกด้าน สามเหลี่ยมทั้งสองรูปจึงเท่ากันทุกประการแบบ "ด้าน-ด้าน-ด้าน" และต้องมีมุมขนาดเท่ากันทุกมุม ดังนั้นมุมที่ด้าน a และ b มาประกอบกัน จึงต้องเป็นมุมฉากด้วย
จากบทพิสูจน์ของบทกลับของทฤษฎีบทปีทาโกรัส เราสามารถนำไปหาว่ารูปสามเหลี่ยมใด ๆ เป็นสามเหลี่ยมมุมแหลม, มุมฉาก หรือ มุมป้าน ได้ เมื่อกำหนดให้ c เป็นความยาวของด้านที่ยาวที่สุดในรูปสามเหลี่ยม
-
ถ้า {\displaystyle a^{2}+b^{2}=c^{2}} สามเหลี่ยมนั้นจะเป็นสามเหลี่ยมมุมฉาก
-
ถ้า {\displaystyle a^{2}+b^{2}>c^{2}} สามเหลี่ยมนั้นจะเป็นสามเหลี่ยมมุมแหลม
-
ถ้า {\displaystyle a^{2}+b^{2}<c^{2}} สามเหลี่ยมนั้นจะเป็นสามเหลี่ยมมุมป้าน